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A simplified v2– f model for near-wall turbulence
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SUMMARY

A simplified version of the v2– f model is proposed that accounts for the distinct effects of low-Reynolds
number and near-wall turbulence. It incorporates modified C�(1,2) coefficients to amplify the level of
dissipation in non-equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes
to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment.
Unlike the conventional v2– f , it requires one additional equation (i.e. the elliptic equation for the elliptic
relaxation parameter f�) to be solved in conjunction with the k–� model. The v2 scaling is evaluated from
k in collaboration with an anisotropic coefficient C� and f�. Consequently, the model needs no boundary
condition on v2 and avoids free stream sensitivity. The model is validated against a few flow cases,
yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data.
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1. INTRODUCTION

An important criterion regarding the appropriateness of the turbulence model is to represent the
near-wall behaviour of turbulence quantities accompanied by a preferential damping of velocity
fluctuations in the direction normal to the wall that reconciles the influence of wall proximity
adequately. In free flows, decreasing the local Reynolds number introduces only the viscous effect
and the pressure fluctuations redistribute the kinetic energy on all components of the Reynolds stress
tensor (and therefore return to isotropy effect). However, the transfer of energy from streamwise to
the wall normal velocity fluctuations is suppressed by distant interaction of pressure fluctuations
with the solid wall [1]. This effect combined with the molecular viscosity effect contributes to
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an increased anisotropy of turbulence near the wall, leading to wall blocking. Therefore, near-
wall turbulence includes both viscous and blocking effects while low Reynolds number (LRN)
turbulence consists of the viscous effect alone [2]. Consequently, the modification proposed for
LRN turbulence is not necessarily applicable to near-wall flows.

In principle, the wall normal and shear stresses (v2, −uv) are strongly damped in the near-wall
region of a turbulent flow. Numerous variants of k–� eddy viscosity models have been devised to
mimic the turbulence attenuation accompanied by the proper behaviour of the eddy viscosity near
the wall [2–18]. The standard k–� model is devised for high Reynolds number turbulent flows
and is traditionally used in wall-bounded flows in conjunction with a wall function approach to
patch the core region of the flow to the wall region. Unfortunately, universal wall functions do
not exist in complex flows having boundary-layer separation or complex alterations of the surface
transport properties. Predictions of such flows with a high Reynolds number turbulence model
can be degraded significantly when integrating to a solid boundary without the proper near-wall
modifications. Consequently, the LRN modelling of turbulence has received extensive attention,
rooted on the resolved turbulence transport processes in the vicinity of the wall. However, the
isotropic LRN k–� model associated with the viscous damping function and near-wall correction
is not always sufficient to provide the appropriate velocity scale (i.e.

√
k is the velocity scale in

k–� model) of turbulence, thus overpredicting the eddy viscosity. The possible reasoning is that
v2 rather than k is the appropriate velocity scale towards the wall [19, 20]. Since the wall normal
component v2, a key contributor to the mixing process, is severely damped in near-wall regions,
the direct influence of the viscous damping function is avoided. The generalized interpretation of
the velocity scale v2 can be found in Reference [21].

The v2– f model suggested by Durbin [20] retains v2 and its source term f as variables in addition
to the traditional k and � parameters of the k–� model. This enables to account for wall blocking
akin to second-moment closures where all stress components are computed and the damping is
achieved by blocking the energy redistribution with the pressure fluctuations. The quantity v2 is
obtained from a transport equation simplified from the second-moment closure. The associated
pressure–strain term in the v2 equation, responsible for redistribution of k in the proximity of walls
in order to return the correct level of turbulence anisotropy, is obtained from an auxiliary elliptic
equation for f which is the modified Helmholtz equation (the solution of which is close to an
exponential decay as the wall is approached). Despite encouraging results of fluid flow problems
encountered in engineering applications, the use of the model is complicated due to a removable
singularity associated with the boundary condition for f . A code friendly version of the v2– f
model to abandon the singularity, in a way similar to the �̃ change of variable by Reference [3]
for the k–� model, has been suggested by Lien and Durbin [22], allowing a segregated solution
to the turbulence field. The model is not only numerically friendly but ideal for block-structured
and unstructured grid methods including their parallelization [23]. Nevertheless, the introduced
modifications lead to some deviations in certain flow regimes, compared with the original v2– f
model and both models exhibit free-stream dependency [24].

On the way of devising a simplified v2– f model, the present study concentrates on LRN and
near-wall turbulence for the isotropic k–� model where the integration up to the wall is extremely
important. Sticking to the conventional definition for �T, the v2 equation is deduced using the
eddy viscosity relationship of Reference [20] and imposing certain constraints. The wall blocking
is governed by an elliptic partial differential equation (i.e. Helmholtz-type equation) and naturally,
non-local near-wall effects are taken into account. The improvement herein springs principally
from the modelling of the velocity scale v2 (as a product of the anisotropic coefficient C�, elliptic
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v2– f MODEL FOR NEAR-WALL TURBULENCE 1389

relaxation function f� and k) to suppress the excessive eddy viscosity in near-wall regions. To this
end, it must be emphasized that compared to the original and modified v2– f models, the present
formulation has the following attributes. It solves one additional equation in conjunction with the k–�
model, i.e. an elliptic equation for the elliptic relaxation parameter f�. The characteristic length scale
associated with the elliptic relaxation equation is designed in terms of Kolmogorov and dynamic
length scales in conjunction with the invariants of strain rate and vorticity tensors. Consequently,
the large constant-dependent sensitivity of the relaxation function is reduced massively [20], and
the non-local effects are explicitly influenced by the mean flow and turbulent variables. The model
sensitivity to free stream values is absent and finally, the turbulence anisotropy is introduced with
both the model coefficients C�(1,2) and �(k,�).

The model performance is validated against experimental and DNS data of well-documented
flows, consisting of a fully developed channel flow, a flat plate boundary layer flow with zero
pressure gradient, a backward facing step flow, an asymmetric plane diffuser flow, and heat transfer
from a semiconfined impinging round jet, respectively. Particular attention is paid to assess the
capability of the new model, relative to the Lien and Durbin model (LDM), i.e. the code friendly
variant of the v2– f model, when used to predict the flows associated with transition, flow separation
and reattachment. The test cases are selected such as to justify the ability of the models to replicate
the combined effects of LRN, near-wall turbulence and non-equilibrium.

2. TURBULENCE MODELLING

In collaboration with the Reynolds-averaged Navier–Stokes (RANS) equations, the proposed model
determines the turbulence kinetic energy k and its dissipation rate � by the following transport
relations:

��k

�t
+ ��u j k

�x j
= �

�x j

[(
� + �T

�k

)
�k
�x j

]
+ �P − �� (1)

���

�t
+ ��u j �

�x j
= �

�x j

[(
� + �T

��

)
��

�x j

]
+ (C�1�P − C�2��)/Tt (2)

where � implies the molecular viscosity, �(k,�) are the appropriate turbulent Prandtl numbers and
the production term P = − uiu j (�ui/�x j ). The Reynolds stresses �uiu j are related to the mean
strain-rate tensor Si j through the Boussinesq approximation:

−�uiu j = 2�T(Si j − 1
3 Skk�i j ) − 2

3�k�i j (3)

Since the viscous dissipation presumably dominates near the wall, the turbulent viscosity is
evaluated from [20]

�T =C��v2Tt (4)

where C� is a constant. The dynamic time scale k/� is replaced by a realizable time scale Tt and
can simply be defined as [20]

Tt =
√
k2

�2
+ C2

T
�

�
= k

�

√
1 + C2

T

ReT
, ReT = k2

��
(5)
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where � = �/� denotes the kinematic viscosity and ReT is the turbulence Reynolds number.
Equation (5) warrants that the eddy time scale never falls below the Kolmogorov time scale
CT

√
�/�, dominant in the immediate neighbourhood of the solid wall. It prevents the singular-

ity in the dissipation equation down to the wall. Alternatively, the turbulence time scale is k/�
at large ReT but approaches the Kolmogorov limit CT

√
�/� for ReT � 1. The empirical constant

CT = 6 associated with the Kolmogorov time scale is estimated from the DNS data for developed
channel flows [20]. Obviously, the inclusion of Tt in the � equation guarantees near-wall asymptotic
consistency without resorting to ad hoc damping functions employed in many k–� models [6]. The
associated empirical functions/constants and the modelling of v2 are discussed in some detail in
subsequent sections.

2.1. Code friendly variant of v2– f model

The code friendly version appears with recourse to the removal of numerical oscillations/divergence
mainly encountered when a segregated numerical procedure is adopted which does not allow an
implicit coupling between v2 and f at the wall. According to the LDM [22], the change of the
variable f is as follows:

f = f̃ − 5�
v2

k2
= f̃ − 5

Tt

v2

k
(6)

Unlike the original v2– f model, the boundary condition for f̃ = 0 at the wall, reducing the depen-
dence between variables and greatly enhancing the numerical stability. Inserting Equation (6) into
the original model provides for the new sets of relations:

��v2

�t
+ ��Ujv

2

�x j
= �k f̃ − 6�

v2

Tt
+ �

�x j

[(
� + �T

�k

)
�v2

�x j

]
(7)

−L2∇2 f̃ + f̃ = 1

Tt

[
(6 − C1)

v2

k
+ 2

3
(C1 − 1) + C2

P

�

]
(8)

The modification retains the same asymptotic near-wall behaviour of v2 as in the original model:
as y → 0, v2 ∼ y4. As y → ∞, the kinematic blocking stemming from the elliptic relaxation dis-
appears. To this end, it must be acknowledged that the term 5L2∇2v2/(kTt ) which appears in
the transformed f̃ equation is neglected, probably for the sake of gaining some privilege over
numerical computation. However, this approximation lacks in theoretical justification. With the
usual log-layer assumption for a developed channel flow (where v2 and k constant, L ∼ y, �∼ 1/y)
the term 5L2∇2v2/(kTt ) ∼ 1/y, and hence it is a non-vanishing term in the f̃ equation.

Since the boundary conditions for both v2 = 0 and f̃ are homogeneous at the wall, the decoupling
of v2 and f̃ equations is readily possible. The characteristic length scale L in Equation (8) is
computed such as to provide smoother switch between Kolmogorov and dynamic length scales

L2 =C2
L

⎛
⎝k3

�2
+ C2

�

√
�3

�

⎞
⎠ (9)
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The change of variable forces the change in the definition of the coefficient C�1 which is suited to
feel the proximity of the wall [23]

C�1 = 1.4

(
1 + 0.05

√
k

v2

)
(10)

It expedites a beneficial increase of � near the edge of the sublayer with no explicit reference to
the wall distance used in the previous version. The constants associated with the LDM are given
by [23]

C� = 0.22, �k = 1, �� = 1.3, C�2 = 1.9

C1 = 1.4, C2 = 0.3, CL = 0.23, C� = 70
(11)

Noteworthily, Equation (8) can be solved using a tridiagonal matrix algorithm (TDMA) with an
initial guess

f̃ = 1

Tt

[
(6 − C1)

v2

k
+ 2

3
(C1 − 1) + C2

P

�

]
(12)

everywhere except on wall boundaries where f̃ = 0. Kalitzin [24] conducted an analysis on the
free-stream behaviour of the v2– f model, demonstrating that under certain flow conditions the
model provides a negative solution to the energy components in the free-stream region. There are
several (arbitrary) ways to eliminate the undesirable sensitivity to the free-stream values, pertaining
to the turbulence variables. The simplest way is to define a large value for the eddy viscosity at the
inlet. At this stage, the price for avoiding the free-stream dependency is recommended as follows:

k = max

(
k,

�

100

Uref

�L ref

)
, �T = max

(
C��v2Tt ,

�

100

)
(13)

where L ref and Uref are the reference length and velocity, respectively. The v2 scaling is calculated
as v2 = �T/(C��Tt ) in order to compute the convection–diffusion fluxes of Equation (7). In this
manner, the lower bound on v2 is abandoned in favour of Equation (13).

2.2. Simplified v2– f model

The evaluation of combined effects relating to LRN and near-wall turbulence (i.e. viscous and
blocking effects) can be accelerated by introducing appropriate anisotropy together with the elliptic
relaxation in the eddy viscosity formulation. The purpose herein is to construct a simplified v2– f
model with greater flexibility and increased accuracy in a manner similar to the LDM. To facilitate
the subsequent development, the calculation commences by resorting to fully developed channel
flows where the definition of the eddy viscosity yields [7]

�T =−�uv

�yu
(14)

However, most of the linear LRN k–� models contain a viscous damping function f� in the eddy
viscosity expression [6]

�T =C� f��kTt (15)
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Figure 1. Exact eddy viscosity compared with k–� and v2– f models in wall co-ordinates.

The usual value of C� = 0.09. The adopted form of f� corrects the asymptotic behaviour of �T,
involving the distinct effects of LRN and wall proximity. In addition, f� = 1 remote from the
wall to ensure that the model is compatible with the standard k–� turbulence model. Alternatively,
the empirical function f� is valid in the whole flow field, including the viscous sublayer and the
logarithmic layer.

Figure 1 shows the turbulent viscosity profiles constructed from the DNS data [25]. In this
figure, Equation (4) is with the present value of C� = 0.2 and Equation (15) assumes f� = 1 (i.e.
standard k–� model). Comparing Equation (4) with Equation (14) reveals that the suppression of
�T near the wall is largely accounted for by the v2 scaling, representing the anisotropy of near-
wall turbulence. Relative to Equation (14), the k–� model with f� = 1 has the wrong profile in
the near-wall region, clarifying the role of the damping function to fit the data with an expected
curve near the wall. Nevertheless, the approach based on ad hoc tuning of f� is unattractive
and fundamentally incorrect. The damping function is often nonlinear and may cause numerical
stiffness. Its application is questionable in the presence of complex geometries and sophisticated
problem statements.

Since the primary objective of introducing the damping effect to closure models is to represent
the kinematic blocking by the wall, v2 rather than k is the appropriate velocity scale to use in the
eddy viscosity formulation [20]. Presuming that Equations (4) and (15) are identical, and hence
the following formula is obtained for v2:

v2 =Cv f�k (16)

where Cv = 0.09/0.2= 0.45. Intuitively, the quantity Cv f� is responsible for the redistribution of
turbulence kinetic energy in near-wall regions in order to return the correct level of turbulence
anisotropy. Consequently, the constant value for Cv is avoided due to the following reasons: to
reproduce the anisotropy of near-wall turbulence; to reduce the large constant-dependent sensitivity
associated with the Kolmogorov length scale in the elliptic relaxation equation for f� defined
afterwards; and finally, to influence the solution stability. The model coefficient Cv is assumed to
be a scalar function of the invariants formed on the strain rate Si j and vorticity Wi j tensors in
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question
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The detailed functional form of Cv is determined relying on the constraints such as DNS and
appropriate experiments, collaborated with the elliptic relaxation equation

Cv = min

[
2

3
,

√
2

3(1 + �)

]
, � = Tt

√
Si j Si j + Wi jWi j (18)

It can be emphasized herein that the proposed relation indubitably is conducive to allowing compat-
ible changes in Cv that account for the above-mentioned obviously desirable aspects. Apparently,
at � = 2.3 Equation (18) is prone to recover Cv ≈ 0.45.

Detailed analysis of DNS data shows that the kinematic blocking effect is much stronger than
the viscous/LRN effect [26]. The empirical approach to modelling the wall-blocking effect is often
inconsistent with the complex flows andmay degrade the results considerably. In such a situation, the
model usually includes some compensation for it, for instance, some additional source term in the
� equation. To eradicate the empiricism/complexity, a Helmholtz-type elliptic relaxation equation
for f� is introduced. It represents a general ellipticity, pertaining to f� without the knowledge of
the wall distance:

−L2∇2 f� + f� = 1 (19)

where L is the characteristic length scale. To avoid the singularity close to the wall, the Kolmogorov
length scale (�3/�)1/4 is added to the dynamic length scale k3/2/�. After some manipulations, a
compatibility relation is deduced as

L2 = �C�

(
C�ReT

k

�
+ C2

�

√
�

�

)
, C� =CT

√
3CT + �2 (20)

The rationale of the present approach is that the wall proximity effect is modelled naturally in con-
junction with the elliptic relaxation function f� and hence non-local effects such as wall blocking.
The virtue of Equation (19) is that unlike the Poisson equation, it requires no special numerical
treatment. It can be solved in parallel with the k–� equations having an initial guess 0� f��1
everywhere except on wall boundaries where f� = 0. With the DNS data Equation (19) is solved
using a tridiagonal matrix algorithm (TDMA) to evaluate Equation (16). Substituting the result in
Equation (4) supplies the eddy viscosity, plotted in Figure 1. Good correlation between the present
and the data is obtained.

Noteworthily, with � = 0 (for instance, in the centre of a fully developed channel flow for an
enough high Re number) f� = 1.0 and the ratio v2/k is forced to be 2

3 , approaching the isotropic
turbulence where the ratio must be 2

3 . Thus, the present formulation confirms that v2 contains
the average energy. To this end, it must be stressed that the present model determines the energy
partition v2/k by the length scale L in association with the anisotropic coefficient Cv , but not by
the redistribution effect as is introduced with the LDM. In principle, the whole flow domain of
the elliptic Helmholtz equation (8) is influenced by the walls and the solution of (8) relaxes to the
homogeneous one far from the wall that is represented by the RHS of the equation. Hence, the
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proposal of the LDM can be thought of as an interpolation method between near-wall and free tur-
bulence, with the interpolation coefficient provided by a non-local model. The present formulation
is essentially contrived to replicate non-local effects in a slightly different manner, much the same as
the LDM.

Near-wall flows show a tendency to underestimate the dissipation rate � due to the local anisotropy
of turbulence, adhering to the non-dimensional parameter P/� [27]. Researchers allow the coeffi-
cient C�1 to be a function of P/� with a view to enhancing dissipation in such a situation [28, 29].
However, in some of the more complex flows that have been calculated, the dependence on P/�
prevents numerical convergence to a steady state [21]. One possible approach to counteracting this
adverse situation is to explore alternative elements with relevance to P/�:

C�1 = 1 +
√

v2

k
, C�2 = 1.27C�1 (21)

As v2 decreases faster than k in the near-wall region, the difference (C�2 − C�1) becomes smaller
thus accounting for the additional production of dissipation by the anisotropy of turbulence. The
parameter P/� is supposed to serve the same purpose when included with C�(1,2).

The budgets of k and � from the DNS data suggest that the role of turbulent diffusion in the
near-wall region is substantial. Accordingly, the coefficients �(k,�) are modelled, rather than being
assigned constant values (unlike the commonly adopted practice with �k = 1.0 and �� = 1.3):

�k =C� +
√

v2

k
, �� =C2/3

� +
√

v2

k
(22)

The model coefficients �(k,�) are developed such that sufficient diffusion is obtained in the vicinity
of the wall. Equation (16) together with Equations (18) and (19) dictates that the turbulent Prandtl
numbers �(k,�) have the values in the range from C� = 0.2 to (1 + C�).

The transport equations for k and � are subjected to the following boundary conditions at solid
walls:

kw = 0, �w = 2�

(
�
√
k

�y

)2

≈ 2�
k

y2
(23)

To avoid numerical instability, the approximation for �w is applied at the first grid node neighbouring
the wall, rather than on the wall itself. This requires normal distance from a wall to the nearest
grid point, which is unambiguous and readily available. The validity of Equation (23) necessitates
that the grid system is fine enough to produce the near-wall limiting behaviour.

3. COMPUTATIONS

To ascertain the efficacy of the proposed model, a few applications to the two-dimensional turbulent
flows consisting of a fully developed channel flow, a flat plate boundary layer flowwith zero pressure
gradient, a backward facing step flow, an asymmetric plane diffuser flow, and heat transfer from
a semiconfined impinging round jet are considered. For comparison purpose, calculations from
the LDM [22] are included. The possible reasoning for the choice of the LDM lies mainly in its
enhanced numerical stability compared to the original v2– f model [20].
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A cell centred finite-volume scheme combined with an artificial compressibility approach is
employed to solve the flow equations [30, 31]. A fully upwinded second-order spatial differencing
is applied to approximate the convective terms. Roe’s [32] damping term is used to calculate the
flux on the cell face. A diagonally dominant alternating direction implicit (DDADI) time integration
method [33] is applied for the iterative solution to the discretized equations. A multigrid method
is utilized for the acceleration of convergence [34]. The basic implementation of the artificial
compressibility method and associated features are described in [30, 31]. Note that the elliptic
relaxation Equations (8) and (19) are solved using TDMA. In every co-ordinate direction, the
implicit stage performs typically two sweeps that provide convincingly the converged state for
( f̃ , f�) at each iteration level.

A variable grid spacing is used to resolve the sharp gradient in near-wall regions. Grid densities
are varied to ensure the grid independence of the numerical results. It is found that the solution is
not very sensitive to the number of grid points as long as there are two points in y+<1.5. In the
computations that follow, convergence is judged by monitoring the root-mean-square residuals of
flow variables. The solution is taken as having converged when all the residuals are of the order
10−4 or less.

3.1. Channel flow

The computation is carried out for a fully developed turbulent channel flow at Re� = 395 for which
turbulence quantities are attainable from the DNS data [25]. Calculations are conducted in the half-
width of the channel, imposing periodic boundary conditions except for the pressure, pertaining to
the upstream and downstream boundaries. The computation involving a 64× 48 non-uniform grid
refinement is considered to be sufficiently accurate to describe the flow characteristics. The length
of the computational domain is 32�, where � is the channel half-width. To ensure the resolution
of the viscous sublayer, the first grid node near the wall is placed at y+ ≈ 0.3. Comparisons are
made by plotting the results in the form of u+ = u/u�, k+ = k/u2� , v+2 = v2/u2� and �+ = ��/u4�
versus y+.

Figure 2 shows the velocity profiles for different models. The prediction of the present model
agrees well with the DNS data. The LDM slightly overestimates the mean velocity profile in the
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Figure 2. Mean velocity profiles of channel flow at Re� = 395.
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Figure 3. Turbulence kinetic energy and v2 profiles of channel flow at Re� = 395.
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Figure 4. Dissipation rate profiles of channel flow at Re� = 395.

outer layer. Further examination of the model performances is directed to the (v+2, k+) profiles
as portrayed in Figure 3 for the near-wall region. As is evident, the present model prediction is
in broad accord with the LDM and DNS data. Figure 4 exhibits the profiles of �+ from the two
computations. The present as well as the LDM provides a maximum �+ at the wall which is more
in line with the DNS data. However, agreement of the present model predictions with the DNS
data seems to be satisfactory.

3.2. Flat plate boundary layer flow

The performance of the proposed model is further contrasted with the experimental data of the
flow over a flat plate with a high free stream turbulence intensity. The test case is taken from
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Figure 5. Streamwise skin friction coefficient of boundary layer flow.

‘ERCOFTAC’ Fluid Dynamics Database WWW Services (http://fluindigo.mech.surrey.ac.uk/)
preserved by P. Voke. Measurements down to x = 1.495m which corresponds to Rex ≈ 94 000, are
made by J. Coupland at Rolls-Royce. The inlet velocity is 9.4m/s and the pressure gradient is zero.

The upstream turbulence intensity Tu = 6.0%, defined as Tu =
√

2
3k/Uref, where Uref indicates the

reference (inlet) velocity. The dissipation is set so that the decay of free stream turbulence is in
balance [13].

Computations begin 16 cm ahead of the leading edge and symmetric conditions are applied. The
length and height of the grid are 1.6 and 0.3m, respectively. The near-wall grid node is located
at y+<1.0, except the point at the leading edge (y+ = 2.1). The grid size is 96× 64 and heavily
clustered near the wall.

The predicted skin friction coefficients (Cf = 2u2�/U
2
ref) are compared with the experimental data

in Figure 5. Savill’s investigation [35] approves that the Launder and Sharma (LS) model is one of
the best models for the prediction of transition points. Therefore, the LS model [4] computation is
plotted for comparison. All models exhibit an interesting feature that the transition starts at the right
position and it is strong enough. Both the LS and present models return the skin friction in terms
of its magnitude and trend with satisfactory accuracy. However, the LDM prediction is somewhat
on a lower level than the data shown.

3.3. Backward facing step flow

To ascertain the performance in complex separated and reattaching turbulent flows, the present
model is applied to the flow over a backward facing step. The computations are conducted cor-
responding to the experimental case with zero deflection of the wall opposite to the step, as
investigated by Driver and Seegmiller [36]. The reference velocity Uref = 44.2m/s and the step
height h = 0.0127m. The ratio between the channel height and the step height is 9 and the step
height Reynolds number is Re= 3.75× 104. At the channel inlet, the Reynolds number based on
the momentum thickness is Re	 = 5.0× 104.
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For the computations, grids are arranged in two blocks. The smaller one (extended from the
inlet to the step) contains a 16× 48 non-uniform grid and the grid size for the other one is
120× 80. The maximum height of the first near-wall grid node is at y+<1.5. The inlet conditions
are specified four step heights upstream of the step corner and the outlet boundary conditions
are imposed 30 step heights downstream of the step corner. The inlet profiles for all dependent
variables are generated by solving the models at the appropriate momentum thickness Reynolds
number. All the quantities shown below are normalized by the step height h and the experimental
reference free stream velocityUref, provided that the distance x/h is measured exactly from the step
corner.

Computed and experimental friction coefficients Cf along the step side wall are plotted in
Figure 6. As is observed, both models are in good agreement with the data. The positive Cf that
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Figure 6. Skin friction coefficient along the step-side bottom wall.
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Figure 7. Mean velocity profiles at selected locations for step flow.
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Figure 8. Shear stress profiles at selected locations for step flow.
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Figure 9. Kinetic energy profiles at selected locations for step flow.

starts from x/h = 0 is due to a secondary eddy which sits in the corner at the base of the step, inside
the main recirculation region. The recirculation lengths predicted by the present and LDM models
are 7.0 and 7.2 h, respectively. The experimental value of the reattachment length is 6.26± 0.1 h,
making a fairly good correspondence with the models.

The streamwise mean velocity profiles at three representative positions are depicted in
Figure 7. Obviously, the predictions of both models are in good agreement with the experiment.
Comparisons are extended to the distributions of Reynolds shear stress and the corresponding turbu-
lent kinetic energy at different x/h locations behind the step corner, as shown in Figures 8 and 9.
A closer inspection of the distribution indicates that both model predictions have satisfactory
agreement with the experimental data in both the recirculation and recovery regions.
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3.4. Asymmetric plane diffuser flow

To further validate the performance in complex separated and reattaching turbulent flows, the present
model is applied to the flow in an asymmetric diffuser with an opening angle of 10◦, for which
measurements are available [37]. The expansion ratio of 4.7 is sufficient to produce a separation
bubble on the deflected wall. Hence, the configuration provides a test case for smooth, adverse
pressure-driven separation. The entrance to the diffuser consists of a plane channel to invoke fully
developed flow with Re= 2.0× 104 based on the centreline velocity Uref and the inlet channel
height h. Computations involving a 120× 72 non-uniform grid resolution are considered to be
accurate to describe the flow characteristics. The length of the computational domain is 76 h. The
thickness of the first cell remains below one in y+ units on both the deflected and flat walls.

Figure 10 portrays the predicted skin friction coefficients Cf. The performance of the present
model evinces an encouraging qualitative agreement with measurements. Figure 11 exhibits the
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Figure 10. Skin friction coefficients of diffuser flow: (a) along the deflected bottom wall and;
(b) along the straight top wall.
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Figure 11. Mean velocity profiles at selected locations for diffuser flow.
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Figure 12. Shear stress profiles at selected locations for diffuser flow.
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Figure 13. Kinetic energy profiles at selected locations for diffuser flow.

mean velocity profiles at three representative positions. The overall performance in predicting the
velocity profiles is the best for the present model. Towards downstream of the diffuser the computed
values of mean velocities, pertaining to the LDM become noticeably smaller than the data show,
except near the wall.

Profiles of the shear stress at three representative streamwise positions are given in
Figure 12. As is observed, the present model predictions are in broad accord with the measured
data. The superiority of the proposed model over the LDM is once more ascertained. The compar-
isons of predicted and measured kinetic energy profiles are displayed in Figure 13 at various x/h
locations. Reasonable agreement is achieved by the present model. On the other hand, the LDM
has noticeable discrepancies with the measured data farther downstream.
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3.5. Semiconfined impinging axisymmetric jet

The performance of the proposed model is further contrasted with the experimental data of the
turbulent axisymmetric jet impinging within a semiconfined space [38, 39]. The Reynolds number
based on the nozzle diameter D is 2.0× 104 and a nozzle to plate space is of two dimensions. The
inlet velocity and turbulence kinetic energy are approximated from the experimental data. The inlet
profile for the energy dissipation is evaluated from � = k1.5/L , where L is estimated to be 6% of the
inlet diameter. A constant temperature is prescribed at the wall which simulates the experimental
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Figure 14. Mean velocity profiles at selected locations for jet flow.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 2 4 6 8

x/
D

100k/U2
ref

r/D=0.5

Present
LDM

EXPT[38]

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 2 4 6 8

x/
D

100k/U2
ref

r/D=1.0

Present
LDM

EXPT[38]

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 2 4 6 8

x/
D

100k/U2
ref

r/D=2.0

Present
LDM

EXPT[38]

Figure 15. Kinetic energy profiles at selected locations for jet flow.
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Figure 16. Nusselt number distribution on the impingement wall for jet flow.

boundary condition [38]. A 80× 64 grid is adopted with a heavy clustering near the wall. The
maximum height of the first near-wall grid node is at y+<1.0. Note that the turbulent heat flux is
estimated using the Boussinesq approximation and the turbulent Prandtl number
�t = 0.9 [3].

Numerical and experimental profiles of the radial velocity are compared in Figure 14. Good
agreement between the present model and the experimental data is retained, in contrast to the
LDM. However, both models underpredict the spreading rate in the wall jet boundary layer where
the flow is accelerated. Computations of Ashforth-Frost and Jambunathan [38] show the similar
behaviour in the wall jet layer.

Profiles for the turbulence kinetic energy are shown in Figure 15. Clearly, agreement with
experimental data is acceptable with the present model. Figure 16 displays the comparison of the
predicted Nusselt number to the experiments. The distance from the symmetry axis is normalized
by the diameter of the jet. As is evident, both models predict the Nu distribution with reasonable
accuracies.

4. CONCLUSIONS

The simplified v2– f model is susceptible to the near-wall and LRN effects emanating from the
physical requirements. Avoiding the free-stream dependency, the new formulation leads to solving
the governing equations in an uncoupled and much more robust way than that of the LDM. The
potential importance of the elliptic relaxation function is conspicuous. The model coefficients/
functions depend nonlinearly on both the mean strain rate and vorticity invariants that preserve
the anisotropic characteristic of turbulence. Consequently, the model is capable of evaluating
the flow cases entangling separation and reattachment. Contrasting the predicted results with
measurements demonstrates that the present model offers considerable improvement over the
LDM.
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NOMENCLATURE

Cf friction coefficient
C� eddy viscosity coefficient
f elliptic relaxation parameter
h channel/step height
k turbulent kinetic energy
L characteristic length scale
P production of turbulent kinetic energy
Re Reynolds number
ReT turbulent Reynolds number
S mean strain-rate
Tt realizable time scale
Tu turbulence intensity
t time
−�uiu j Reynolds stresses
ui mean velocity components
Uref reference velocity
v2 squared velocity scale
W mean vorticity
x, y Cartesian co-ordinates
y+ non-dimensional normal distance from the solid surface

Greek letters

� half-width of the channel
�i j Kronecker’s delta
� turbulent dissipation
�, �T molecular and eddy viscosities
� = �/� molecular kinematic viscosity
� density
� turbulent Prandtl number
� shear stress
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